• How would you describe SUTD’s growth and development since its formation in 2009?

We have made extraordinary progress over the past couple of years. We have put in place an exceptional quality curriculum and attracted first class students, faculty and staff. Our first two terms, using a unique and innovative approach to teaching, based upon cohort-based teaching and learning communities, concluded with a rousing success! Students enjoyed the learning experience, and faculty too enjoyed this new approach to teaching.

• What were some of the key goals set for the initial years, and have they been met?

The university is a human resource “game”, so without the very best faculty, staff and students, we have little chance of succeeding. So one of the key goals for our initial years is to attract first class faculty and staff. We are pleased to have now attracted 104 faculty from the best universities in the world. They themselves have been accomplished students and researchers, and they bring to SUTD a firm grounding in important areas of research, a passion and energy for education and for developing the type of SUTD community we want to establish.

• What would you consider to be SUTD’s significant research achievements to date?

We have established five major research centres:

- The SUTD-MIT International Design Centre is focused on important issues facing society as well as working in close collaboration with MIT to improve approaches and processes to design.
- We’ve launched the Lee Kuan Yew Centre for Innovative Cities (LKCYC) and are fortunate to have attracted Ambassador Chan Heng Chee to lead the Centre; she will be splitting her time between SUTD and being Ambassador-at-large for Singapore. She brings extraordinary experiences in public policy and governance, and will be working with faculty to bring the best of design and technology to bear upon cities. Bearing the Minister Mentor’s name and being located in Singapore, a model city for the world, it will be a particularly exciting centre.
- iTRUST (cyber systems), still in its early stages, this centre is built in collaboration with MINDEF. It will address an important issue for society which clearly has substantial research challenges.
- Temasek Laboratories, also developed with MINDEF, will address systems issues for the soldier, large databases, unmanned vehicles, etc.
- SUTD-GREAT Lab (SGLab), our newest centre, has a main thrust to produce the next generation of game visionaries through its Game Innovation Programme and develop a pipe line of breakthrough games.

SUTD has also attracted about 150 organisations that have endorsed the “SUTD product”, by committing internships for our students, and are working closely with us in various ways.

• How would you describe your experience with the 1st batch of students?

Our first batch of students is truly exceptional. With a rigorous curriculum, we were looking for multi-talented individuals who were well-grounded in technology, Maths and Science. I am pleased they also have a breadth of abilities; over a third of our students have the substantial expertise in music, be it singing, dancing or playing an instrument. So, we have been able to attract students with both left and right brain capabilities.

• What are some of the challenges faced by SUTD?

Clearly the challenge of a start-up. We’re often asked a variety of questions such as, will SUTD be recognised by the world? Will our students be able to secure good positions and careers when they leave SUTD? Will SUTD be accredited? We’re completely confident in answering these questions affirmatively. We’ve been working with the accrediting agencies towards accreditation, and they’re very positive and supportive of what we’re doing. We’ve talked to many companies about SUTD’s multi-disciplinary approach to education, the type of degrees we’re offering, and these have been received with great enthusiasm by industry.

The biggest challenge though is ‘branding’; getting the word out about what we’re doing and also in attracting the best and brightest. We’ve done well so far, but we need to continue to attract the best faculty, students and staff.

• What do you look forward to in the next 6 months?

Not sleep! By that time, we’ll be close to completing our third term. A culmination of our innovative curriculum we affectionately call the Freshmore year, which blends the Freshman and the first half of the Sophomore year. We’re offering new courses in the third term which nobody in the world has: courses on the Digital World, the Physical World and the World on Systems, that provide students with a broad technical background to complement the broad scientific background and firm foundations in the arts, humanities and social sciences.

I’m looking to further development of the curriculum and its success; the research centres becoming more firmly established; hiring more faculty – I’m gratified by the response from the international academic community; many talented people have applied. The culture and environment we’re establishing is very special; the informality and the interactive community among faculty, students and staff is quite special. As an educator, I’m gratified and rewarded to see our students’ progress and development, as I walk around the classrooms and interact with some of them. I think we’ll see more development of their entrepreneurship talents, and their growth personally and professionally. All very exciting.
Even before the signing of the MIT-SUTD Collaboration Agreement in 2010, there were already expectations that Singapore’s fourth publicly-funded university would be different from its counterparts, and embodied a vision to deliver a world-class technology and design education that was ahead of its time. Just a short two years on, SUTD has made great leaps towards fulfilling that vision in giving students an optimal learning and design experience through its 4-Dimensional Big-Design (Big-D) curriculum.

The 4-Dimensional Big-D curriculum has been designed with an emphasis on a multi-disciplinary approach to promote a vibrant design culture within and outside the cohort classroom where students will not be passive spectators in their own learning. Within the first Big-D dimension, each Freshmore subject has pivotal concepts that every student needs to master. In-class active and collaborative learning activities are incorporated into the lessons so that students can better visualise, understand and appreciate those foundational concepts.

In the second dimension, we have Integrative Designettes which are design projects that link applications coherently across the different foundational disciplines such as Maths, Science, HASS and Design, thereby providing a big picture awareness of design thinking. Not only will students be able to relate concepts from different subjects and apply their technical knowledge, they will work in teams and be encouraged to showcase their creativity in their Freshmore year. In the third aspect of the 4-Dimensional curriculum, students will embark on numerous thematic design projects of high societal and global impact during their pillar years. This can be facilitated and supported through a set of Concept Vignettes which are a set of videos specially developed by MIT that incorporate demonstrations, experiments and animations that illustrate key concepts and help students to master critical skills that will advance them beyond the Freshmore terms to their pillar studies.

Last but not least is the 4D Big-D in which students will be given an increasingly complex and changing world.

OVERVIEW OF 1D TO 4D

<table>
<thead>
<tr>
<th>FRESHMORE TERMS</th>
<th>PILLAR TERMS</th>
<th>CAPSTONE TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D MATH</td>
<td>2D FLUID</td>
<td>3D CAPSTONE</td>
</tr>
<tr>
<td>1D HASS</td>
<td>1D PHYS</td>
<td></td>
</tr>
<tr>
<td>1D CHEM</td>
<td>1D MATH</td>
<td></td>
</tr>
<tr>
<td>1D PHYS</td>
<td>1D CHEM</td>
<td></td>
</tr>
<tr>
<td>1D PHYS</td>
<td>1D CHEM</td>
<td></td>
</tr>
</tbody>
</table>

| FIFTH ROW, INTERNSHIPS, PROJECTS, HACKING etc. | 4D |

The faculty from the various subjects worked hard to generate a set of classes and exercises that revolved around the objective of delivering food to a besieged fortress or citadel. Students were taught simple design methods and asked to generate and evaluate 2D designs of machines and methods that could deliver aid to the starving citadel.

At the end of the week, students were given access to chemical and pneumatic cannons where they were allowed to shoot potatoes at the “citadel” and compare the performance of these devices with the calculations presented earlier in the week.

As part of the exercise, the cohort that achieved the most potatoes in the citadel was declared the winner of the shooting competition. Some cohort classes responded to this challenge with an organised approach to calculate and predict shot trajectories, discussions on the best shape of projectiles, and methods to convey information to the gun crew. The students then submitted reports that were overviews of the experience.

Professor John Brisson, coordinator of SUTD’s curriculum development for Freshmore, said: “The 10th week design exercise was enjoyed by the entire SUTD community. Faculty and students admitted it was a lot of work”, while several students wished that more time could have been devoted to the project. The exercise was fun, instilled a sense of community and allowed students a hands-on experience with the theory they have been studying at SUTD.

The Physics 2D Project was part of a collaborative and comprehensive design project by the various subjects: HASS, Chemistry, Physics and Mathematics. To the students, it was better known as Week 10 - The Hellish Week.

At the beginning of the week, students were told about this design project which was to be completed within a week. It came as a shock to some as it was the first time they would be working on a project from scratch, giving theoretical data physical shape and meaning. Nonetheless, many were thrilled because they were eager for a hands-on project after weeks of written tests. They were, however, not prepared for the gravity of the project.

The Physics 2D potato cannon was a simple idea; calculate the horizontal range of a potato of a certain mass, to be launched at a certain angle under certain drag conditions. Group discussions began in earnest after Professor Kristin Wood, Head of EPD pillar, introduced the brainstorming process.

It was a time when the school was united in shared misery, and fun, which came only as the day of the inter-class potato shooting competition approached. The individual groups in each class huddled together, shared knowledge and started adopting an organisational structure. At class 12F04, for example, the ‘brains’ of the class were appointed as the Command Centre, while those with better leadership skills were at the forefront of the action to facilitate the launch of the potato cannons. The more playful classmates were assigned to cutting of the potatoes while the rest focused on adjusting the angle of the launch, the pressure in the cannon and simply cheering their classmates on.

Class 12F04 managed to land 20% of the potatoes inside the citadel, not a perfect 100% because of the changing wind speeds and directions thwarting their plans. Nevertheless, they did come out top among the cohorts.

Cynthia Tong, student from 12F04 said: “The 2D Physics project was memorable because it was an emotional roller-coaster, bringing us misery, then thrills and satisfaction in applying our theoretical knowledge, and sweet, sweet success!”
The EPD pillar prides itself as having a diverse group of sectors currently addressed are electronics, energy, machinery, and operation of technology-intensive products which are the world, with a range of externally funding projects with Bio-medical Engineering, Design Science, Design Theory & for leadership in the conception, design, implementation Engineering Product Development.

ASD graduates will be equipped with the best Board of Architects to ensure that the curriculum will meet all the requirements for the professional architecture Preparations for the start of the Pillar Year in 2013 are currently in full swing, and ASD is working closely with pursues careers in many related fields such as real estate, construction and project development.

An engaging, hands-on and design-focused pedagogy in every course will be emphasised. Students will be engaged in a whole host of activities as in as well as outside of the classroom, on campus and beyond. Overall, ASD will be a highly engaged design laboratory that addresses real-world issues and proposes design approaches for a large range of spatial and temporal scales. Besides becoming practising architects, graduates of the ASD pillar can pursue careers in many related fields such as real estate, construction and project development.

Preparations for the start of the Pillar Year in 2013 are currently in full swing, and ASD is working closely with Board of Architects to ensure that the curriculum will meet all the requirements for the professional architecture licensing of graduates. The pillar is also collaborating with the Singapore Institute of Architects to ensure that ASD graduates will be equipped with the best education possible.

Engineering Product Development

The mission of the Engineering Product Development (EPD) pillar is to carry out innovative research and prepare students for leadership in the conception, design, implementation and operation of technology-intensive products which are developed across many fields. Exemplary product-systems sectors currently addressed are electronics, energy, machinery, healthcare, assistive technologies and transportation.

The EPD pillar prides itself as having a diverse group of world-class faculty specialising in clusters of academia, research and invention, from Automation & Control, Bio-medical Engineering, Design Science, Design Theory & Methodology, to Embedded System, Photonics, Precision Engineering, Rapid Prototyping, and more. These are distinguished graduates from leading institutions across the world, with a range of externally funding projects with sponsors such as A*Star, the Ministry of Education, the Ministry of Defence, and the Energy Market Authority.

EPD faculty, in concert with ASD faculty, led the development of SUTD’s inaugural “Introduction to Design” course in September 2012, conducted by 28 faculty members. This course introduced students to concepts of design in a variety of scales and through engineering and architectural design disciplines. Student groups completed 65 design exhibits under a team of instructors, which were displayed to members of the public on 7 December. The exhibition is part of the collaboration between SUTD and the Science Centre Board (SCB) where arrangements have been made for selected exhibits to be prototyped and fabricated for display at the Science Centre’s exhibition galleries. SCB and EPD will also be exploring opportunities for the students to design SCB’s new facilities for its new programmes in the near future.

The future of the EPD pillar is bright. Faculty, staff and students are actively carrying out cutting-edge scholarly research, teaching and entrepreneurship. The results of these efforts are paying high dividends in SUTD’s research communities, industrial practice and society. As EPD continues to grow and evolve, we will seek nothing less than to improve every aspect of product development and how products and systems are experienced by persons across all walks of life.

Engineering Systems and Design

Engineering systems entail large, complex systems where performance and function depend both on their technology and the socio-economic context within which they operate. Students in the Engineering Systems and Design (ESD) pillar study modelling, design, optimisation and management of large, complex engineering and engineered systems. The ESD undergraduate curriculum is structured to provide students with the knowledge and skills necessary for future system architects and leaders of engineering systems. Students learn to analyse, design and operate an engineering system with a global perspective, and benefit from extensive, guided experiences at doing so in a range of contexts. Their knowledge and skills are applicable across many types of engineering systems, including:

- Supply chains and logistics
- Financial services
- Health care delivery systems
- Transportation systems
- Security and defense systems
- Energy production and distribution systems
- Telecommunication systems and
- Service-intensive systems including retail, hospitality and entertainment.

In addition to providing a strong foundation in the fundamentals of mathematics, science and engineering, the ESD curriculum will expose students to the social sciences, including management, economics and public policy, with an emphasis on the soft skills, including communication, team work, entrepreneurship and ethics. It will also focus on decision analytics—the leveraging of big data, powerful algorithms and cheap computing to support intelligent and data-driven decision making in a variety of domains. The ESD curriculum is modular and flexible, with a mix of half and full term courses and a wide range of technical electives, allowing students to gain more depth in one of several application focus tracks.

To support its growing research and education programme, the ESD pillar has been successful in attracting world leading academics from the very best universities in the world, including MIT, Stanford, Cambridge, Cornell, among others, and with diverse nationalities. In the past year alone, more than 10 new faculty members have joined. The ESD pillar is expected to continue to grow rapidly over the next few years, making it one of the largest such programmes in the world. ESD faculty are engaged in leading edge research in a wide range of areas, including supply chains, including infrastructure, financial engineering, innovation and entrepreneurship, optimisation, economics and game theory, stochastic systems, telecommunication systems, renewable energy, electricity markets and more.

Information Systems Technology and Design

Computing has pervaded nearly all walks of life. This has led to a huge and rising demand for manpower well-versed with the foundations of computing and possessing skills for the design, development and evolution of complex and secure software Computing has pervaded nearly all walks of life. This has led to a huge and rising demand for manpower well-versed with the foundations of computing and possessing skills for the design, development and evolution of complex and secure software

The ISTD pillar and its educational offerings are designed to educate and train innovators capable of life-long self-learning and contributing to all areas of computing. The mission of ISTD is to advance knowledge and nurture technically grounded leaders and innovators to serve societal needs by harnessing the existing computing technology and advancing it through innovative design. With this backdrop, ISTD will stay focused on its mission through:

- Continuous self and external assessment.
- Intensive engagement with academic, commercial and national elements of society.
- Quality research in information and compute-intensive systems and design.
- Innovative pedagogy and curriculum that offers students a truly multi-disciplinary environment of learning via experimentation that fosters SUTD’s core values of passion, leadership, creativity, integrity and collaboration.

ISTD offers education and training in areas such as algorithms, artificial intelligence, graphics and visualisation, human-computer interaction, information retrieval, information security networking, programming languages and compilers and software engineering. ISTD offerings are interdisciplinary thus allowing students to transcend all pillars at SUTD.

Graduates with expertise in any one or more areas supported by ISTD are in high and growing demand. They are well-positioned to develop new software that enables efficient and secure operation of complex systems in areas such as transportation, healthcare, entertainment, energy and defense. For example, ISTD graduates will be able to design and develop applications for smart phones, create intelligent, adaptable and flexible robots, develop monitoring and control software for smart medical devices, create software to advise soldiers in an active battle, design software systems to manage the global financial system, create advanced animations, and develop other complex and secure systems.
The PhD Programme, with a residency spanning three to five years, comprises research, course work, potential industry internships and overseas research exchanges. SUTD PhD students will graduate from one of the four pillars: Architecture and Design, Technology and Design, Cities and Cities, Science and Engineering, and a first in Singapore's graduate engineering and architecture landscape. To better prepare students for their future careers, they will be provided with a professional development opportunities programme focusing on the soft skills, including communication, leadership and entrepreneurship.

Students can take courses and conduct research work that cut across Engineering and Architecture disciplines drawing from the five vibrant research centres within SUTD: the SUTD-MIT International Design Centre, Lee Kuan Yew Centre for Innovative Cities, Temasek Laboratories, TRUST and the SUTD-GREAT Lab. They will also have opportunities to serve as co-instructors in SUTD’s undergraduate courses and as project mentors to the undergraduate students.

Up to 50 prestigious SUTD President’s Graduate Fellowships, which will be awarded to high-calibre full-time PhD students, cover:
• Full tuition fees
• Monthly stipend of $33,000 for each scholar and up to 10% additional stipend for Singapore Citizens & Permanent Residents
• Annual conference funding support
• Opportunities for overseas research exchanges and/or industry internships

Applications are now open. Visit www.sutd.edu.sg/phd for more information.

“The process of innovation wherein a germ of an idea becomes a full-fledged product serving a human need has always fascinated me. The Dual Masters’ Programme in System Design and Management helped me to understand the innovation process from end to end. MIT gave me the skills and knowledge to fuel technology innovation and I am applying them at SUTD to build a customer focused innovation platform for software companies.”

Karthikayan Rajasekharan, System Design and Management Programme

The MIT-SUTD Dual Masters’ Programme is a joint collaboration between the Massachusetts Institute of Technology (MIT) and SUTD, which aims to support and promote outstanding researchers to maximise their potential.

The two-year programme was launched in November 2010 with a pioneer batch of students entering into Civil and Environmental, Manufacturing, System Design and Management and Supply Chain programmes at MIT. The stringent selection process ensures that students are able to meet the academic requirements and other challenges. Students spend between nine and 13 months pursuing a professional Master Degree programme at MIT, and the remaining period conducting research at SUTD. Upon completion, they graduate with two Masters’ degrees: one from MIT and another from SUTD.

“In five years, the IDC will be recognised as the leading design science research centre in the world”

Anonymous Scholarly Leader of SUTD

The SUTD-MIT International Design Centre (IDC) intends to become the world’s premiere scholarly hub for technologically intensive design, where its research is tightly integrated with SUTD’s curriculum. With these goals in mind, the IDC will be transforming its research space in the interim SUTD campus at Dover.

Dover campus
Situated at the heart of the Dover campus, the IDC Gallery will become an exciting new space for research and knowledge sharing. Its 13m by 16m space will host an office/desk-space component, a small prototyping facility as well as an exhibition gallery to showcase some of the most exciting design research work at the IDC. The IDC Gallery will create space for a vibrant research community, project a theme of innovation and the Science of Design, while balancing efficient and effective use of resources.

The SUTD-MIT International Design Centre (IDC) currently has 39 research projects. The IDC Gallery will become a central place for the SUTD-MIT IDC community to meet and interact. The IDC Gallery will be a space that promotes the sharing of knowledge, ideas and research. It will be a space where the SUTD-MIT IDC community can come together and engage in meaningful discussions.

The IDC Gallery will be a space that promotes the sharing of knowledge, ideas and research. It will be a space where the SUTD-MIT IDC community can come together and engage in meaningful discussions.

The IDC Gallery will be a space that promotes the sharing of knowledge, ideas and research. It will be a space where the SUTD-MIT IDC community can come together and engage in meaningful discussions.
SUTD Dover Campus

As the government announced the setting up of Singapore University of Technology and Design in Oct 2009, the pioneer team of the university had already been working quietly but furiously with MOE to finalise the plans for an interim campus to support the university’s first three academic years. The team, then known as Office of New University, had to plan, design and develop the physical campus within two years. Given the short time, the design of the campus had to be completed even before the curriculum was drafted and also before the first faculty was appointed. As a result, the key design strategies adopted were flexibility of spaces, provision of basic infrastructure at the onset with fit-out works to be carried out at a later stage when the curriculum requirements were clearer. The Dover campus, formerly the Institute of Technical Education (ITE), was selected for conversion to an interim technology-based university campus. The campus is relatively small at about 30,000 sqm (Phase I of the academic facilities in the East Coast campus is about 100,000 sqm) and the compactness of the campus during SUTD’s formative years will help to create an intimate environment where students, faculty researchers, and staff could study, work, interact and play together.

Cohort Classrooms
A key space supporting the unique pedagogy of SUTD’s undergraduate curriculum is the cohort classroom where students will be “home based” for their first three terms. The cohort classrooms are fitted with numerous multi-media teaching aids such as interactive projectors, sound systems as well as traditional writing surfaces. The classroom furniture was carefully selected to allow for ease of movement and reconfiguration of furniture layouts within the classroom. Each cohort classroom is also fitted with an acoustic operable wall allowing the classroom to be subdivided into two smaller classrooms fully equipped with the necessary teaching aids such as projectors and writing surfaces. The cohort classrooms are used to deliver lectures, tutorials, lab experiments, demonstrations and project workshops during the first three terms of the undergraduate curriculum.

Collaboration Spaces
To promote informal interaction and collaboration within the SUTD community, various collaboration spaces were designed as part of the campus. The foyer of the admin block is the first point of interaction for visitors as they drop off at the car porch. Flanking key sides of the foyer are large display spaces for showcasing student projects and university research programmes. The foyer is also the “village square” where the university community would gather for celebrations and Open House exhibitions.

Outdoor tables and chairs are placed under the shade of a roof and each courtyard is cooled by a gigantic fan, providing spaces for many intellectual discussions held among students, faculty and staff. The airspace of the terrace is also gaining a reputation as a space for student pranks or hacks - in the first month of lessons, a bicycle and a cat were hidden under a green space. A group of student studying at a desk has been hung in the East Terrace on separate occasions by unknown students.

Right in the heart of the campus is a lushly landscaped space, named the Oasis, which was originally a quadangle. The lush landscape serves as a visual relief from the concrete surroundings and seating areas hidden within the landscape. The outdoor space is a space away from the hustle of the campus. At the front of the library, the former concrete steps of the mini amphitheatre have been laid over with artificial turf transforming the area into an inviting multi-purpose mini green space.

The Dover campus, while interim in nature, meets all the functional needs of the university in its formative years and more importantly, serve as the springboard and incubator space for SUTD to develop into a world class technology and design university.

More enhancements will be added to Dover campus as the campus population grows and needs emerge. Outdoor futsal courts and new extensions to the campus will be added to the campus progressively in the coming year.

MATRICULATION

SUTD’s FIRST batch of 340 undergraduate students successfully matriculated on 27 April 2012.

Students from a variety of schools, ranging from junior colleges, polytechnics, schools offering the international baccalaureate programme to the NUS High School, turned up with their luggage for the matriculation, which included checking into their hostel next to the Dover campus the same day. Some even wore special with their banners and pillows.

Staff and campus builder students went about distributing welcome packs to the students who arrived in batches, providing various briefings on the hostel and tuition grants, handling university fee payments and hostell check-ins.

Quality, Not Quantity

President Thomas Magnanti said: “Our first batch of students has been, from day one, to focus on the quality of our students, and not quantity. Given that our mission is to develop the next generation of technology leaders and innovators through technology and design, our students must demonstrate a real passion for improving the world through technology and design, to be selected.”

SUTD has been actively engaging prospective students and raising public awareness through various channels since 2006. For the inaugural student intake, the university exceeded its target and enrolled 47 percent female students. Compared to the average 20 percent of engineering students in institutions who are female, SUTD offers a more balanced environment which enriches learning through the different perspective female students bring.

INAUGURATION CEREMONY

The University Inauguration Ceremony 2012 (UIC) marked the official start of the undergraduate academic programme for SUTD. It was a culmination of the effort by everyone, within and associated with SUTD, to set up this university.

“The Management and Board of SUTD and the Singapore Government for the vision of creating a university to develop tomorrow’s innovation leaders.

The Massachusetts Institute of Technology (MIT) and Zhejiang University (ZJU) for collaborating with SUTD to help develop an interdisciplinary and multidisciplinary curriculum.

The staff of SUTD, with the assistance of campus builder students, for ensuring that the university is ready to welcome its first batch of students.

The students for their confidence in a new university and taking the first step to apply.

The industry partners for supporting SUTD with scholarships, bursaries and internship opportunities, and

The individuals and corporations for their generous donations and support.

As Sharlene Wong, the President of SUTD’s pro tem Student Council aptly described, "The choice to come to SUTD was definitely not the easiest of decisions, and what lies ahead remains for us to discover; it is up to us to make SUTD the right choice. When that happens, we can proudly say that we were here first."
On 3 & 4 March 2012, SUTD held its second open house. Over 2000 prospective students explored SUTD’s Dover campus and interacted with more than 100 admitted students who were manning booths at the concourse and facilitating designette workshops. The corridors were filled with families on a guided tour around the university. Occasionally, one could find an unmanned aerial vehicle hovering above the reception table, or spot the giant Transformers’ Bumblebee robot trudging around taking pictures with intrigued visitors.

The open house was a great opportunity for parents and prospective students to ask questions about the university. One of the most common questions faced by Jenn, who was helping out at the admissions booth, was regarding SUTD’s admission criteria. “Many of the visitors who came for the open house were concerned about the possibility of rejection from SUTD,” said Jenn. “But I was happy to aid the visitors with their queries and assure them that there was no need to be afraid to apply for SUTD.”

Zhong Ying, who was one of the students manning the ASD booth, was asked many times about why he chose to study architecture in SUTD. “If an architect had to design a building next to a temple, there would be certain social considerations. This is when architects need to have knowledge of social sciences and a slice of humanities to aid them in their considerations during the development of a building,” he explained. “SUTD truly takes into consideration my values and beliefs in architecture - that, it comprises a diverse realm of subjects; namely, people-centred planning, environmental and social considerations, technology and design.”

The multi-disciplinary aspect of the university’s curriculum was also exhibited by three science booths at the concourse. “Everyone who stopped by wondered what biology was doing in SUTD. That was usually the icebreaker for a conversation,” said Asmidah, a helper at the biology booth. Asmidah also developed a sense of belonging to the university after the open house. “Through the open house, I was able to interact with my future lecturers, staff, peers, and understood what SUTD has to offer,” she shared. “More importantly, through sharing with prospective students, I reaffirmed my position as an eager student of SUTD.”

“I remember taking a picture of myself in the process of popping a balloon at the high speed photography kiosk last year. Fast forward five months, I was once again at the very same kiosk, but this time as the person behind the camera,” she reminisced. “It was then that I learned about how the photos were taken with just a DSLR and a flash machine. We had a lot of fun taking pictures of people shooting arrows through the balloons with a bow, or hitting balloons with a sword. We even attempted to stuff balloons with glitter or another balloon!”

As the open house drew to its inevitable close, Tom, our President, and three other faculty members entertained everyone who helped out with a series of impromptu songs. Before nightfall, the campus returned to its original state of open spaces and empty corridors. For prospective students, the decision about whether to apply would be hovering in their minds. For those who helped out at the open house, there was a common reaffirmation of why they chose SUTD. There is undeniably no one better to convince people about choosing SUTD, than the students who have made that choice themselves.
In the words of John William Gardner, “Much education today is monumentally ineffective. All too often we are giving young people cut flowers when we should be teaching them to grow their own plants.”

With this need for educating ‘plant growers’ in mind, SUTD’s fundraising Gala Dinner held on 4 May at the Ritz-Carlton Millenia was a way to kick start the university’s first semester. Gracing the occasion was Guest-of-Honour Emeritus Senior Minister Goh Chok Tong, who was also announced as the Patron for Advancement at SUTD.

S$2.5M Was Raised

Thanks to Board of Trustees, Mrs Fang Ai Lian and Mr Sam Goi, SUTD received generous support from over 55 organisations, which far exceeded expectations and enabled the university to raise $2.5 million in endowed donations for bursaries, study awards and scholarships. The amount was more than twice the initial target. With the Ministry of Education’s 3:1 matching scheme, SUTD will receive $10 million in endowed funds for the advancement of education.

Conducted by Professor Kristin Wood, Head of Pillar for Engineering Product Development, an ‘Imagineering’ segment immersed guests in simple design challenges, modelled after SUTD’s cohort-based, hands-on learning experience. At the end of the evening, everyone took home their own creations as a uniquely SUTD souvenir.

Admissions Briefing

Almost a total of 1000 people filled the ballroom at Mandarin Orchard Hotel on 1 and 8 December 2012, during two admissions briefings, eager to find out more about SUTD. The three-hour event included an introduction of the uniqueness of SUTD by President, Professor Thomas Magnanti, examples of interesting school life by some SUTD pioneer students and a dialogue between the President and various industry leaders who support SUTD with internships and scholarship.

During the tea reception that followed, the potential students, many accompanied by their parents, could be seen actively seeking out SUTD faculty, staff and students, to answer their questions regarding admission criteria, scholarships, the curriculum, difference between pillars, and more.